Le métier de Data Analyst

management des équipes rh

Une fonction orientée Big Data

 

Le Data Analyst, également appelé analyste de données, Data Manager ou Data Miner, est chargé du recueil et de l’exploitation des informations orientant les prises de décision des dirigeants.

Il traite les extractions de bases de données, les analyse et les interprète pour permettre d’obtenir des observations utiles et ainsi permettre à l’entreprise d’orienter ses stratégies marketing et produit afin d’améliorer ses résultats. Il peut dégager des tendances d'achat ou de consommation ou élaborer un profil client.

 

Le Data Analyst doit avoir des compétences techniques et maîtriser plusieurs outils et logiciels ainsi que les langages de programmation. Il a généralement suivi des études dans le domaine de l’informatique ou du marketing digital avec une spécialisation en Big Data, et est titulaire d’un diplôme de niveau Bac+5. Par ailleurs, il doit avoir un goût prononcé pour les chiffres, avec une véritable expertise statistique, parler anglais couramment et être doté d’une grande aisance rédactionnelle et relationnelle.

 

Les missions du Data Analyst sont diversifiées.

 

Voici en ce sens les tâches types que vous pourrez rencontrer 

  • Recueillir et extraire des sources de données de qualité à traduire par la suite en données statistiques
  • Réaliser une veille technologique quant aux nouveaux outils dans le but de perfectionner l’analyse des données
  • Traiter, exploiter puis intégrer des données dans un data warehouse (un entrepôt de données)
  • Créer des dashboards, effectuer des KPIs et reporting de performances 
  • Mettre en application des process et des automatisations 
  • Avoir la gestion des outils d'analyse offrant la possibilité aux décideurs internes ou aux clients de suivre l'évolution des produits ou de leurs sites
  • Faire en sorte que les rapports d’analyse provenant du BI et du Web Analytics soient correctement diffusés et interprêtés
  • Réaliser des modélisations de données pour segmenter une audience

 

Découvrez le métier de Data Analyst, ses évolutions professionnelles et les formations Studi.

 

En savoir plus

Portrait type du Data Analyst

 

Il trouve du travail facilement avec un bac + 5.

Il a un caractère méthodique, organisé, analytique et rigoureux.

Il travaille dans le secteur privé ou public, dans un bureau, en zone urbaine, en France ou à l’international, et avec des horaires en journée.

Indépendant ou salarié, il gagne entre 3 000 € et 5 000 € bruts par mois selon son expérience et sa situation géographique.

Qui recrute des Data Analysts ?

  • Entreprise du service numérique

    Le Data Analyst recruté par une ESN exerce ses fonctions au sein d’entreprises clientes pour des missions ponctuelles. C’est un accès au métier très intéressant pour les Data Analysts juniors qui ont besoin d’étoffer leurs connaissances et compétences, et qui peuvent le faire dans des secteurs d’activité très différents selon les clients.

  • Grandes entreprises

    Les grandes entreprises ont généralement plusieurs équipes de professionnels de la data : Data Engineer, Data Manager, etc. Ainsi, dans ce contexte, le Data Analyst fait partie d’une équipe avec un effectif plus ou moins important dédié à la data.

  • Freelance

    Le Data Analyst peut également devenir indépendant et effectuer des missions dans des entreprises qui externalisent cette partie. En général, il choisit de se lancer en tant que freelance après quelques années d’expérience.

                                                            Une question sur un métier, une formation ? 

 

Je souhaite être rappelé

Quelles études pour devenir Data Analyst ?
 

Le niveau de diplôme attendu pour devenir Data Analyst est un Bac+5 (titre RNCP de niveau 7).

 

Plusieurs filières offrent des débouchés sur ce métier, à condition d’y trouver des pôles de compétences en : 

  • Statistiques
  • Informatique
  • Programmation

 

Vous pouvez par exemple opter pour un Master en mathématiques appliquées, ou pour une école d’ingénieur. Cependant, des ponts existent avec des formations en marketing digital qui proposent une spécialisation en big data ou en business intelligence. C’est le cas de nombreuses écoles de commerce et écoles en ligne, comme Studi.

Vous souhaitez vous engager dans cette filière ? Contactez l’un de nos conseillers pédagogiques pour discuter de votre parcours académique et trouver la formation adaptée à votre profil. Que vous soyez en poursuite d’études ou en reconversion professionnelle, ils vous aideront à trouver le programme pour concrétiser votre projet professionnel.

 

Votre parcours de formation chez Studi

MBA Marketing et Communication
ESG école de commerce
Eligible CPF
MBA Marketing et Communication
Bac+5
100% en ligne
Titre RNCP
financement-validation-acquis
HETIC
Eligible CPF
Bachelor Développeur d'application Java
Bac+3
100% en ligne
Titre RNCP
apprendre_mon_premier_metier
HETIC
Eligible CPF
Bachelor Développeur d'application Python
Bac+3
100% en ligne
Titre RNCP
bts services informatiques aux organisations sio
logo digital campus couleur
Eligible CPF

Quelles sont les conditions de travail du Data Analyst ?

  • Environnement de travail du Data Analyst

    L’analyste de données travaille dans tous types d’entreprises de différents secteurs d’activité. Dans l'exercice de son métier, il travaille essentiellement sur ordinateur.

    Il doit connaître les outils de Web Analytics (Google Analytics, AT Internet, etc.), et avoir de solides bases en programmation.

    Il est méthodique, analytique et réactif, et doit également avoir un esprit analytique et de synthèse afin d’apporter une vision cohérente et d’aider les dirigeants de l’entreprise dans leurs prises de décisions.

  • Cadre hiérarchique

    Le Data Analyst peut être rattaché à différentes directions métiers. Il peut être sous la tutelle d’un directeur de la data ou du Chief Data Officer lorsqu’il y en a un, ou sous l’autorité d’un directeur des systèmes d’information, ou encore il peut reporter au directeur marketing.

    La plupart des Data Analysts collaborent avec les équipes informatiques, les managers ou les Data Scientists afin de déterminer les objectifs à atteindre.

  • Horaires et saisonnalité

    Le Data Analyst travaille essentiellement sur des horaires de bureau en journée, mais il est amené à avoir une charge de travail importante, les entreprises croulant sous les données, et ainsi avoir des horaires décalés.

Salaire du Data Analyst

 

En France, le salaire moyen d’un Data Analyst est de 43 000 euros bruts annuels. Ce salaire varie en fonction du nombre d’années d’expérience, du type de diplôme et du niveau de responsabilité que possède le candidat. 

  • En début de carrière, il n’est pas rare d’accepter un emploi avec une rémunération plus proche des 38 000 euros bruts annuels.
  • En fin de carrière, ce professionnel peut viser des salaires entre 55 et 60 000 euros bruts annuels.

Enfin, les salaires en région parisienne sont généralement plus intéressants pour les Data Analyst qu’en province.

  • 3000

    bruts mensuels
    en début de carrière

  • 5000

    bruts mensuels
    avec de l'expérience

Quel est le profil du Data Analyst ?

 

Qualités majeures

Rigueur, réactivité, esprit d'analyse et polyvalence sont des compétences essentielles pour exercer le métier d’analyste de données. Le Data analyse doit aussi être un grand passionné de chiffres et de statistiques, une appétence nécessaire puisqu’il est responsable de toutes les opérations relatives aux bases de données. 

Le Data Analyst doit avoir une parfaite connaissance des langages informatiques et des bases de données, ainsi que des capacité de rédaction, de synthèse et de communication.

Il doit maîtriser l’anglais, être force de proposition et avoir un esprit critique et une rigueur à toutes épreuves.

Enfin, des compétences en mathématiques, statistiques et marketing, un sens de l'observation et de la pédagogie sont indispensables pour devenir Data Analyst.

 

Et justement, voici un tour d’horizon des aptitudes à maîtriser 

  • Maîtrise des techniques statistiques et de datamining (SAS, SPSS, VBA, ACCES), des langages de programmation (R, Python…), de bases de données SQL, et des outils de web Analytics
  • Maîtrise des tests et des méthodes statistiques (segmentation, régression, forêt aléatoire…)
  • Maîtrise des outils de fouille et analyse de données (Dataiku…)
  • Maîtrise d’un outil de data visualisation (Tableau, Qlikview, PowerBI)
  • Maîtrise des systèmes d’exploitation (Unix, Windows…)
  • Connaissances juridiques et réglementaires de la gestion des données (usage, délais, durée de vie…)
  • Connaître l’environnement Hadoop
  • Anglais courant

 

Expérience

Les Data Analysts qui ont le plus d’expérience ont souvent le rôle de Data Scientists junior. Ils écrivent des requêtes et développent des solutions personnalisées.

  • 4 /5

    Relationnel

  • 4 /5

    Indépendance

  • 5 /5

    Réflexion

  • 4 /5

    Technique

  • 3 /5

    Action

Evolution professionnelle

 

Les Data Analysts ont plusieurs choix d’évolution : certains pourront s’orienter vers des postes de Lead Data Analyst, Data Engineer, ou Data Scientist, ou vers des postes d’encadrement managériaux comme Responsable Data, Data Security Manager ou Chief Data Officer. Mais ce n’est pas tout. Les Data Analysts peuvent également se tourner vers les services de pricing ou de revenue management, ou encore avoir à leur charge le service de relation client (CRM).

 

Je me forme !

Situation du métier

Qualifié de métier porteur et complet, l'avenir des Data Analysts s’annonce radieux. En effet, particulièrement recherchés par les entreprises et ce dans d’innombrables domaines d’activités : assurances et banques, ventes au détail, grande distribution, médias, communication, transports et logistiques, industries, administrations publiques, informatique et téléphonie, ou moins connues les sociétés de conseil spécialisées en Business intelligence et Digital transformation, les recrutements des plus dynamiques. 

La raison qui explique un tel intérêt pour ce métier ? Les Data Analysts ont un rôle stratégique crucial pour toutes les structures : analyser puis traiter les données avant d’extraire les plus pertinentes d’entre elles afin de booster le business (par le biais de nouveaux services, de nouveaux produits ou encore de nouvelles opportunités de marché). A ce titre, on dit communément qu’un Data Analyst a le pouvoir de faire parler les données ! Et cela va sans dire, le volume de données est aujourd’hui colossal voire massif. Alors pour pouvoir les exploiter, il est nécessaire de recruter un profil expert en la matière. L’entreprise y gagne alors à plusieurs niveaux : diriger la satisfaction client, les services après-vente, l’automatisation de certaines tâches, la gestion des fraudes, l’aide à la décision mais aussi l’anticipation des pannes. 
Nombre croissant d’entreprises se dirigeant vers le Big Data, afflux important de données à maîtriser, innovations technologiques continues (qui exigent une actualisation régulière à l’aide de logiciels derniers cris), mais aussi mise à jour réglementaire (les entreprises doivent respecter les nouvelles lois à l’instar du RGPD) sont au cœur de l’évolution et de l’essor fulgurant du métier de Data Analyst. 
 

Le secteur de la Data

Bien que relativement récent, le secteur de la Data connaît un succès retentissent ces dernières années. Le besoin étant grandissant, les entreprises misent et investissent franchement dans ces métiers et donc profils hautement qualifiés. Et d’ailleurs, la demande est si importante qu’elle devance le nombre de spécialistes de la Data !  On comprend donc aisément pourquoi les débouchés sont si prometteurs dans cette voie. Tournée vers l’avenir et ancrée dans l’air du temps, la branche du Data est par conséquent en plein boom : machines learning, intelligence artificielle, internet des objets, nouvelles mobilités ou encore l’écologie font partie des innovations et projets actuels majeures. Et les prévisions sont bonnes à tous les niveaux : un rapport du cabinet IDC estime que la production globale de données passera de 45 zettaoctets en 2019 à 175 zettaoctets en 2025. De même, LinkedIn indique une augmentation de 650 % des métiers de la Data depuis 2012. De quoi assurer de belles perspectives de carrière aux diplômés du secteur. 

Spécialisations du métier de Data Analyst

  • Data Marketing Analyst

    Le Data Marketing Analyst est expert en analyse quantitative et qualitative, et son rôle est d’identifier les statistiques clés du marché, d’interpréter les résultats et d’aider les responsables marketing à comprendre et manipuler les chiffres derrière leurs stratégies marketing.

    Ses missions :

    • Définir différents outils d'analyse et concevoir des tableaux de bord qui aident à la prise de décision et au suivi de la performance commerciale.
    • Traduire les données des différentes opérations pour les transformer en informations opérationnelles sous forme de synthèses, reporting et présentations.
    • Mettre en perspective les données analysées avec les orientations business globales ou spécifiques de l'entreprise et mesurer leur impact stratégique à moyen et long terme.
    • Définir des indicateurs décisionnels clés permettant de piloter et d'optimiser le cycle de vie du client dans un parcours multicanal.
    • Présenter les données analysées de manière claire, visuelle et pédagogique.
  • Data Scientist

    La Data Scientist a une mission plus technique que le Data Analyst : il crée des algorithmes, met en place les outils nécessaires pour faire des prédictions, pour collecter et traiter les données.

    Ses missions :

    • Réceptionner et analyser le besoin.
    • Définir le périmètre et les sources de données.
    • Proposer, concevoir et mettre en œuvre des requêtes pour récupérer les données souhaitées à partir des différents systèmes d’informations décisionnels.
    • Veiller à la conformité des données extraites.
    • Mettre en œuvre et garantir la modélisation statistique des données.
    • Développer des algorithmes d’apprentissage et scénarios prédictifs des comportements clients.
    • Optimiser la segmentation client à l’aide des statistiques et données de consommation.
  • Data Architect

    Le Data Architect est au cœur de la conception des plateformes de données de l’entreprise et des modèles apportés par le Data Scientist.

    Ses missions :

    • Apporter ses conseils sur les choix de solutions, plateformes et technologies data à mettre en œuvre.
    • Cadrer et formaliser les besoins des clients pour les traduire en exigences techniques.
    • Réaliser des études de faisabilité technique.
    • Définir une architecture de données cible répondant aux exigences fonctionnelles et techniques.
    • Prendre part à la rédaction de cahiers des charges, dossiers d’architecture technique.
    • Garantir la cohérence technique des solutions à mettre en œuvre.
    • Designer et prototyper des architectures de données adaptées aux problématiques SI.
    • Accompagner les équipes de développement dans la mise en place des solutions préconisées.
    • Assurer une veille technologique.
    • Concevoir et animer des formations techniques sur les technologies Data.
  • Data Engineer

    Le Data Engineer développe des solutions sécurisées qui permettent de traiter un gros volume de données dans un temps limité. Il définit, développe, met en place et maintient les outils et infrastructures nécessaires à l’analyse des données.

    Ses missions :

    • Délivrer des projets Data Lake / Big Data (ingestion de sources, pipeline de traitements de données, modélisation, tests, déploiements) dans un contexte de plus en plus DevOps.
    • Comprendre les besoins des équipes digitales, principalement associées aux projets Data Science et leurs technologies et outils.
    • Évaluer les contraintes techniques (IT, sécurité, accès, outils) d’une DSI.
    • Assurer la veille technologique sur les composants d’une plateforme Datalake, Cloud.
    • Assurer la maintenance des environnements techniques et partager ses connaissances.
    • Rédiger les documents projets : design, réalisation, déploiement, etc.
  • Data Quality Manager

    Le Data Quality Manager vérifie l’exactitude et les mises à jour des données collectées, stockées et utilisées par tous les métiers de l’entreprise. Il doit assurer la standardisation de la data en créant par exemple une structure commune pour référencer tous les produits de l’entreprise.

    Ses missions :

    • Mettre en œuvre une stratégie Data Quality autour des données de référencement produits et l’animer.
    • Définir les bons indicateurs de qualité de données d’un périmètre et mettre en place les outils nécessaires à les superviser.
    • Extraire et manipuler un ensemble de données provenant de différents systèmes d'informations afin de pouvoir les comparer et ainsi identifier les éventuelles erreurs d’intégrités.
    • Être à l’écoute des équipes technico-fonctionnelles des processus de référencement afin de déterminer les besoins Data Quality.
    • Suivre les incidents ou problèmes de production liés à la qualité de données afin de faire évoluer la stratégie Data Quality.
    • Construire un collectif pour réussir à élever significativement le niveau de qualité des données d’un périmètre.

3 avantages du métier 

  • Un métier très sollicité et en pleine expansion
  • Un salaire attractif 
  • Des missions variées 
     

Obtenir un bilan gratuit

Les autres métiers du domaine : Code - IT

Scrum Master Chef / Cheffe de projet digital Chief Digital Officer Directeur / Directrice technique Chef / Cheffe de projet informatique Développeur / Développeuse web Développeur / Développeuse full stack Développeur / Développeuse front-end Webmaster Intégrateur / Intégratrice Web Développeur / Développeuse informatique Ingénieur / Ingénieure informatique Technicien / Technicienne informatique Data Scientist Data Engineer Administrateur / Administratrice réseaux et sécurité Administrateur / Administratrice systèmes Administrateur / Administratrice d’infrastructure Superviseur / Superviseuse infrastructure et réseaux Responsable infrastructure systèmes et réseaux Développeur / Développeuse JavaScript Développeur / Développeuse Java Développeur / Développeuse back-end Développeur / Développeuse application mobile Développeur / Développeuse Python Développeur / Développeuse .Net Développeur / Développeuse web mobile Lead Developer Technicien / Technicienne systèmes et réseaux Technicien / Technicienne helpdesk Développeur / Développeuse Flutter Technicien / Technicienne support Technicien / Technicienne d’exploitation Analyste programmeur Développeur / Développeuse Angular Développeur / Développeuse Symfony Technicien / Technicienne en télécommunications Technicien / Technicienne de maintenance Technicien / Technicienne SAV Data visualist Développeur / Développeuse mobile Androïd Concepteur développeur / Conceptrice développeuse Concepteur / Conceptrice d’applications informatiques Développeur / Développeuse d’applications Développeur / Développeuse PHP/Symfony Développeur / Développeuse PHP SysOPS DEVOPS Ingénieur système DevOps Ingénieur Cloud Développeur / Développeuse Cloud Ingénieur DevOps
Voir tous les métiers